1 Spark概述
1.1 spark or haddop
MR框架主要应用于数据的一次性计算:存存储介质中读取数据,然后进行过处理后,再存储到文件中。IO读取多,效率低。
1)Spark是基于MR框架的,但是优化了其中的计算过程,使用内存来代替计算结果。减少了磁盘IO,因此快。(MR多作业之间会多次磁盘的IO,因此慢)
2)Spark基于Scala语言开发的,更适合迭代计算和数据挖掘计算
3) Spark中计算模型非常丰富(MR中只有两个计算模型:mapper和reducer);spark的计算模型有:map,filter,groupby,sortby。
工作中:是Spark中和Yarn联合使用:资源用的是Yarn,计算用的是spark。
1.2 Spark核心模块
1.1 Spark 核心模块
1)Spark Core
Spark Core中提供了Spark最基础与最核心的功能,Spark其他的功能如:Spark SQL,Spark Streaming,GraphX, MLlib都是在Spark Core的基础上进行扩展的
2) Spark SQL
Spark SQL是Spark用来操作结构化数据的组件。通过Spark SQL,用户可以使用SQL或者Apache Hive版本的SQL方言(HQL)来查询数据。
- Spark Streaming
Spark Streaming是Spark平台上针对实时数据进行流式计算的组件,提供了丰富的处理数据流的API。
4) Spark MLlib
MLlib是Spark提供的一个机器学习算法库。MLlib不仅提供了模型评估、数据导入等额外的功能,还提供了一些更底层的机器学习原语。
5)Spark GraphX
GraphX是Spark面向图计算提供的框架与算法库。
2 Spark快速上手
在大数据早期的课程中我们已经学习了MapReduce框架的原理及基本使用,并了解了其底层数据处理的实现方式。接下来,就让咱们走进Spark的世界,了解一下它是如何带领我们完成数据处理的。
2.1 创建Maven项目
2.1.1 增加Scala插件
Spark由Scala语言开发的,所以本课件接下来的开发所使用的语言也为Scala,咱们当前使用的Spark版本为3.0.0,默认采用的Scala编译版本为2.12,所以后续开发时。我们依然采用这个版本。开发前请保证IDEA开发工具中含有Scala开发插件。
2.1.2 增加依赖关系
修改Maven项目中的POM文件,增加Spark框架的依赖关系。本课件基于Spark3.0版本,使用时请注意对应版本。
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<!-- 该插件用于将Scala代码编译成class文件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<!-- 声明绑定到maven的compile阶段 -->
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.1.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
2.1.3 WordCount
为了能直观地感受Spark框架的效果,接下来我们实现一个大数据学科中最常见的教学案例WordCount
// 创建Spark运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建Spark上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭Spark连接
sc.stop()
执行过程中,会产生大量的执行日志,如果为了能够更好的查看程序的执行结果,可以在项目的resources目录中创建log4j.properties文件,并添加日志配置信息:
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
2.1.4 异常处理
如果本机操作系统是Windows,在程序中使用了Hadoop相关的东西,比如写入文件到HDFS,则会遇到如下异常:
出现这个问题的原因,并不是程序的错误,而是windows系统用到了hadoop相关的服务,解决办法是通过配置关联到windows的系统依赖就可以了
在IDEA中配置Run Configuration,添加HADOOP_HOME变量
3 Spark运行环境
Spark作为一个数据处理框架和计算引擎,被设计在所有常见的集群环境中运行, 在国内工作中主流的环境为Yarn,不过逐渐容器式环境也慢慢流行起来。接下来,我们就分别看看不同环境下Spark的运行。
3.1 Local模式
所谓的Local模式,就是不需要其他任何节点资源就可以在本地执行Spark代码的环境,一般用于教学,调试,演示等,之前在IDEA中运行代码的环境我们称之为开发环境,不太一样。(Local=本机提供资源+spark提供计算)
3.1.1 解压缩文件
将spark-3.0.0-bin-hadoop3.2.tgz文件上传到Linux并解压缩,放置在指定位置,路径中不要包含中文或空格,课件后续如果涉及到解压缩操作,不再强调。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-local
3.1.2 启动Local环境
- 进入解压缩后的路径,执行如下指令
bin/spark-shell
- 启动成功后,可以输入网址进行Web UI监控页面访问
http://虚拟机地址:4040
3.1.3 命令行工具
在解压缩文件夹下的data目录中,添加word.txt文件。在命令行工具中执行如下代码指令(和IDEA中代码简化版一致)
sc.textFile("data/word.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect
3.1.4 退出本地模式
按键Ctrl+C或输入Scala指令
:quit
3.1.5 提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[2] \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- –class表示要执行程序的主类,此处可以更换为咱们自己写的应用程序
- –master local[2] 部署模式,默认为本地模式,数字表示分配的虚拟CPU核数量;不知道可以用*
- spark-examples_2.12-3.0.0.jar 运行的应用类所在的jar包,实际使用时,可以设定为咱们自己打的jar包
- 数字10表示程序的入口参数,用于设定当前应用的任务数量
3.2 Standalone模式
local本地模式毕竟只是用来进行练习演示的,真实工作中还是要将应用提交到对应的集群中去执行,这里我们来看看只使用Spark自身节点运行的集群模式,也就是我们所谓的独立部署(Standalone)模式。Spark的Standalone模式体现了经典的master-slave模式。(Standalone=spark提供资源+spark提供计算)
集群规划:
Linux1 | Linux2 | Linux3 | |
---|---|---|---|
Spark | Worker Master | Worker | Worker |
3.2.1 解压缩文件
将spark-3.0.0-bin-hadoop3.2.tgz文件上传到Linux并解压缩在指定位置
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-standalone
3.2.2 修改配置文件
- 进入解压缩后路径的conf目录,修改slaves.template文件名为slaves
mv slaves.template slaves 修改slaves文件,添加worker节点
linux1
linux2
linux3
- 修改spark-env.sh.template文件名为spark-env.sh
mv spark-env.sh.template spark-env.sh
修改spark-env.sh文件,添加JAVA_HOME环境变量和集群对应的master节点。指定master机器,和集群间spark通信的端口。
export JAVA_HOME=/opt/module/jdk1.8.0_144
SPARK_MASTER_HOST=linux1
SPARK_MASTER_PORT=7077
注意:7077端口,相当于hadoop3内部通信的8020端口,此处的端口需要确认自己的Hadoop配置
- 分发spark-standalone目录
xsync spark-standalone
3.2.3 启动集群
- 执行脚本命令:
sbin/start-all.sh
- 查看三台服务器运行进程
xcall jps
================linux1================
3330 Jps
3238 Worker
3163 Master
================linux2================
2966 Jps
2908 Worker
================linux3================
2978 Worker
3036 Jps
- 查看Master资源监控Web UI界面: http://linux1:8080
3.2.4 提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- –class表示要执行程序的主
- –master spark://linux1:7077 独立部署模式,连接到Spark集群
- spark-examples_2.12-3.0.0.jar 运行类所在的jar包
- 数字10表示程序的入口参数,用于设定当前应用的任务数量
执行任务时,会产生多个Java进程
执行任务时,默认采用服务器集群节点的总核数,每个节点内存1024M。
3.2.5 提交参数说明
在提交应用中,一般会同时一些提交参数
bin/spark-submit \
--class <main-class>
--master <master-url> \
... # other options
<application-jar> \
[application-arguments]
参数 | 解释 | 可选值举例 |
---|---|---|
–class | Spark程序中包含主函数的类 | |
–master | Spark程序运行的模式(环境) | *模式:local[]、spark://linux1:7077、 Yarn** |
–executor-memory 1G | 指定每个executor可用内存为1G | 符合集群内存配置即可,具体情况具体分析。 |
–total-executor-cores 2 | 指定所有executor使用的cpu核数为2个 | |
–executor-cores | 指定每个executor使用的cpu核数 | |
application-jar | 打包好的应用jar,包含依赖。这个URL在集群中全局可见。 比如hdfs:// 共享存储系统,如果是file:// path,那么所有的节点的path都包含同样的jar | |
application-arguments | 传给main()方法的参数 |
3.2.6 配置历史服务
由于spark-shell停止掉后,集群监控linux1:4040页面就看不到历史任务的运行情况,所以开发时都配置历史服务器记录任务运行情况。**(历史信息存到了HDFS中)**
- 修改spark-defaults.conf.template文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改spark-default.conf文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:8020/directory
注意:需要启动hadoop集群,HDFS上的directory目录需要提前存在。
sbin/start-dfs.sh
hadoop fs -mkdir /directory
- 修改spark-env.sh文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"
l 参数1含义:WEB UI访问的端口号为18080
l 参数2含义:指定历史服务器日志存储路径
l 参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 分发配置文件
xsync conf
- 重新启动集群和历史服务
sbin/start-all.sh
sbin/start-history-server.sh
- 重新执行任务
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- 查看历史服务:http://linux1:18080
3.2.7 配置高可用(HA)
所谓的高可用是因为当前集群中的Master节点只有一个,所以会存在单点故障问题。所以为了解决单点故障问题,需要在集群中配置多个Master节点,一旦处于活动状态的Master发生故障时,由备用Master提供服务,保证作业可以继续执行。这里的高可用一般采用Zookeeper设置。
集群规划:
Linux1 | Linux2 | Linux3 | |
---|---|---|---|
Spark | Master Zookeeper Worker | Master Zookeeper Worker | Zookeeper Worker |
- 停止集群
sbin/stop-all.sh
- 启动Zookeeper
xstart zk
- 修改spark-env.sh文件添加如下配置
注释如下内容:
#SPARK_MASTER_HOST=linux1
#SPARK_MASTER_PORT=7077
添加如下内容:
#Master监控页面默认访问端口为8080,但是可能会和Zookeeper冲突,所以改成8989,也可以自定义,访问UI监控页面时请注意
SPARK_MASTER_WEBUI_PORT=8989
export SPARK_DAEMON_JAVA_OPTS="
-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=linux1,linux2,linux3
-Dspark.deploy.zookeeper.dir=/spark"
- 分发配置文件
xsync conf/
- 启动集群
sbin/start-all.sh
- 启动linux2的单独Master节点,此时linux2节点Master状态处于备用状态
[root@linux2 spark-standalone]# sbin/start-master.sh
- 提交应用到高可用集群
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux1:7077,linux2:7077 \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- 停止linux1的Master资源监控进程
- 查看linux2的Master 资源监控Web UI,稍等一段时间后,linux2节点的Master状态提升为活动状态
3.3 Yarn模式
独立部署(Standalone)模式由Spark自身提供计算资源,无需其他框架提供资源。这种方式降低了和其他第三方资源框架的耦合性,独立性非常强。但是你也要记住,Spark主要是计算框架,而不是资源调度框架,所以本身提供的资源调度并不是它的强项,所以还是和其他专业的资源调度框架集成会更靠谱一些。所以接下来我们来学习在强大的Yarn环境下Spark是如何工作的(其实是因为在国内工作中,Yarn使用的非常多)。
3.3.1 解压缩文件
将spark-3.0.0-bin-hadoop3.2.tgz文件上传到linux并解压缩,放置在指定位置。
tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module
cd /opt/module
mv spark-3.0.0-bin-hadoop3.2 spark-yarn
3.3.2 修改配置文件
- 修改hadoop配置文件/opt/module/hadoop/etc/hadoop/yarn-site.xml, 并分发
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
- 修改conf/spark-env.sh,添加JAVA_HOME和YARN_CONF_DIR配置
mv spark-env.sh.template spark-env.sh
查找yarn的位置
export JAVA_HOME=/opt/module/jdk1.8.0_144
YARN_CONF_DIR=/opt/module/hadoop/etc/hadoop
3.3.3 启动HDFS以及YARN集群
瞅啥呢,自己启动去!
3.3.4 提交应用
master指定为yarn,部署模式为集群模式。
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
查看 http://linux2:8088 页面,点击History,查看历史页面
3.3.5 配置历史服务器
- 修改spark-defaults.conf.template文件名为spark-defaults.conf
mv spark-defaults.conf.template spark-defaults.conf
- 修改spark-default.conf文件,配置日志存储路径
spark.eventLog.enabled true
spark.eventLog.dir hdfs://linux1:8020/directory
注意:需要启动hadoop集群,HDFS上的目录需要提前存在。
[root@linux1 hadoop]# sbin/start-dfs.sh
[root@linux1 hadoop]# hadoop fs -mkdir /directory
- 修改spark-env.sh文件, 添加日志配置
export SPARK_HISTORY_OPTS="
-Dspark.history.ui.port=18080
-Dspark.history.fs.logDirectory=hdfs://linux1:8020/directory
-Dspark.history.retainedApplications=30"
l 参数1含义:WEB UI访问的端口号为18080
l 参数2含义:指定历史服务器日志存储路径
l 参数3含义:指定保存Application历史记录的个数,如果超过这个值,旧的应用程序信息将被删除,这个是内存中的应用数,而不是页面上显示的应用数。
- 修改spark-defaults.conf
spark.yarn.historyServer.address=linux1:18080
spark.history.ui.port=18080
- 启动历史服务
sbin/start-history-server.sh
- 重新提交应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
- Web页面查看日志:http://linux2:8088
3.4 K8S & Mesos模式
Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内核,在Twitter得到广泛使用,管理着Twitter超过30,0000台服务器上的应用部署,但是在国内,依然使用着传统的Hadoop大数据框架,所以国内使用Mesos框架的并不多,但是原理其实都差不多,这里我们就不做过多讲解了。
容器化部署是目前业界很流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而Spark也在最近的版本中支持了k8s部署模式。这里我们也不做过多的讲解。给个链接大家自己感受一下:https://spark.apache.org/docs/latest/running-on-kubernetes.html
3.5 Windows模式
在同学们自己学习时,每次都需要启动虚拟机,启动集群,这是一个比较繁琐的过程,并且会占大量的系统资源,导致系统执行变慢,不仅仅影响学习效果,也影响学习进度,Spark非常暖心地提供了可以在windows系统下启动本地集群的方式,这样,在不使用虚拟机的情况下,也能学习Spark的基本使用!
在后续的教学中,为了能够给同学们更加流畅的教学效果和教学体验,我们一般情况下都会采用windows系统的集群来学习Spark。
3.5.1 解压缩文件
将文件spark-3.0.0-bin-hadoop3.2.tgz解压缩到无中文无空格的路径中
3.5.2 启动本地环境
- 执行解压缩文件路径下bin目录中的spark-shell.cmd文件,启动Spark本地环境
- 在bin目录中创建input目录,并添加word.txt文件, 在命令行中输入脚本代码
3.5.3 命令行提交应用
在DOS命令行窗口中执行提交指令
spark-submit --class org.apache.spark.examples.SparkPi --master local[2] ../examples/jars/spark-examples_2.12-3.0.0.jar 10
3.6 部署模式对比
模式 | Spark安装机器数 | 需启动的进程 | 所属者 | 应用场景 |
---|---|---|---|---|
Local | 1 | 无 | Spark | 测试 |
Standalone | 3 | Master及Worker | Spark | 单独部署 |
Yarn | 1 | Yarn及HDFS | Hadoop | 混合部署 |
3.7 端口号
Spark查看当前Spark-shell运行任务情况端口号:4040(计算)
Spark Master内部通信服务端口号:7077
Standalone模式下,Spark Master Web端口号:8080(资源)
Spark历史服务器端口号:18080
Hadoop YARN任务运行情况查看端口号:8088